Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Intracellular glutathione pools are heterogeneously concentrated.

Identifieur interne : 000748 ( Main/Exploration ); précédent : 000747; suivant : 000749

Intracellular glutathione pools are heterogeneously concentrated.

Auteurs : Davide Montero [Suisse] ; Christine Tachibana ; Jakob Rahr Winther ; Christian Appenzeller-Herzog

Source :

RBID : pubmed:24251119

Descripteurs français

English descriptors

Abstract

Glutathione is present in millimolar concentrations in the cell, but its relative distribution among cellular compartments remains elusive. We have chosen the endoplasmic reticulum (ER) as an example organelle to study compartment-specific glutathione levels. Using a glutaredoxin sensor (sCGrx1pER), which rapidly and specifically equilibrates with the reduced glutathione (GSH)-glutathione disulfide (GSSG) redox couple with known equilibrium constant, we showed that the [GSH]:[GSSG] ratio in the ER of intact HeLa cells is less than 7:1. Taking into consideration the previously determined value for [GSH](2):[GSSG] in the ER of 83 mM, this translates into a total glutathione concentration in the ER ([GStot]=[GSH]+2[GSSG]) of greater than 15 mM. Since the integrated, intracellular [GStot] was measured as ~7 mM, we conclude the existence of a [GStot] gradient across the ER membrane. A possible homeostatic mechanism by which cytosol-derived glutathione is trapped in the ER is discussed. We propose a high [GStot] as a distinguishing feature of the ER environment compared to the extracellular space.

DOI: 10.1016/j.redox.2013.10.005
PubMed: 24251119
PubMed Central: PMC3830055


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Intracellular glutathione pools are heterogeneously concentrated.</title>
<author>
<name sortKey="Montero, Davide" sort="Montero, Davide" uniqKey="Montero D" first="Davide" last="Montero">Davide Montero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tachibana, Christine" sort="Tachibana, Christine" uniqKey="Tachibana C" first="Christine" last="Tachibana">Christine Tachibana</name>
</author>
<author>
<name sortKey="Rahr Winther, Jakob" sort="Rahr Winther, Jakob" uniqKey="Rahr Winther J" first="Jakob" last="Rahr Winther">Jakob Rahr Winther</name>
</author>
<author>
<name sortKey="Appenzeller Herzog, Christian" sort="Appenzeller Herzog, Christian" uniqKey="Appenzeller Herzog C" first="Christian" last="Appenzeller-Herzog">Christian Appenzeller-Herzog</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24251119</idno>
<idno type="pmid">24251119</idno>
<idno type="doi">10.1016/j.redox.2013.10.005</idno>
<idno type="pmc">PMC3830055</idno>
<idno type="wicri:Area/Main/Corpus">000686</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000686</idno>
<idno type="wicri:Area/Main/Curation">000686</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000686</idno>
<idno type="wicri:Area/Main/Exploration">000686</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Intracellular glutathione pools are heterogeneously concentrated.</title>
<author>
<name sortKey="Montero, Davide" sort="Montero, Davide" uniqKey="Montero D" first="Davide" last="Montero">Davide Montero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tachibana, Christine" sort="Tachibana, Christine" uniqKey="Tachibana C" first="Christine" last="Tachibana">Christine Tachibana</name>
</author>
<author>
<name sortKey="Rahr Winther, Jakob" sort="Rahr Winther, Jakob" uniqKey="Rahr Winther J" first="Jakob" last="Rahr Winther">Jakob Rahr Winther</name>
</author>
<author>
<name sortKey="Appenzeller Herzog, Christian" sort="Appenzeller Herzog, Christian" uniqKey="Appenzeller Herzog C" first="Christian" last="Appenzeller-Herzog">Christian Appenzeller-Herzog</name>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cytosol (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Humans (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HeLa (MeSH)</term>
<term>Cytosol (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Endoplasmic Reticulum</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytosol</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>HeLa Cells</term>
<term>Homeostasis</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Homéostasie</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione is present in millimolar concentrations in the cell, but its relative distribution among cellular compartments remains elusive. We have chosen the endoplasmic reticulum (ER) as an example organelle to study compartment-specific glutathione levels. Using a glutaredoxin sensor (sCGrx1pER), which rapidly and specifically equilibrates with the reduced glutathione (GSH)-glutathione disulfide (GSSG) redox couple with known equilibrium constant, we showed that the [GSH]:[GSSG] ratio in the ER of intact HeLa cells is less than 7:1. Taking into consideration the previously determined value for [GSH](2):[GSSG] in the ER of 83 mM, this translates into a total glutathione concentration in the ER ([GStot]=[GSH]+2[GSSG]) of greater than 15 mM. Since the integrated, intracellular [GStot] was measured as ~7 mM, we conclude the existence of a [GStot] gradient across the ER membrane. A possible homeostatic mechanism by which cytosol-derived glutathione is trapped in the ER is discussed. We propose a high [GStot] as a distinguishing feature of the ER environment compared to the extracellular space. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24251119</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Intracellular glutathione pools are heterogeneously concentrated.</ArticleTitle>
<Pagination>
<MedlinePgn>508-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2013.10.005</ELocationID>
<Abstract>
<AbstractText>Glutathione is present in millimolar concentrations in the cell, but its relative distribution among cellular compartments remains elusive. We have chosen the endoplasmic reticulum (ER) as an example organelle to study compartment-specific glutathione levels. Using a glutaredoxin sensor (sCGrx1pER), which rapidly and specifically equilibrates with the reduced glutathione (GSH)-glutathione disulfide (GSSG) redox couple with known equilibrium constant, we showed that the [GSH]:[GSSG] ratio in the ER of intact HeLa cells is less than 7:1. Taking into consideration the previously determined value for [GSH](2):[GSSG] in the ER of 83 mM, this translates into a total glutathione concentration in the ER ([GStot]=[GSH]+2[GSSG]) of greater than 15 mM. Since the integrated, intracellular [GStot] was measured as ~7 mM, we conclude the existence of a [GStot] gradient across the ER membrane. A possible homeostatic mechanism by which cytosol-derived glutathione is trapped in the ER is discussed. We propose a high [GStot] as a distinguishing feature of the ER environment compared to the extracellular space. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Montero</LastName>
<ForeName>Davide</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tachibana</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rahr Winther</LastName>
<ForeName>Jakob</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Appenzeller-Herzog</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DTT, Dithiothreitol</Keyword>
<Keyword MajorTopicYN="N">EGSH, Half cell reduction potential of glutathione</Keyword>
<Keyword MajorTopicYN="N">ER, Endoplasmic reticulum</Keyword>
<Keyword MajorTopicYN="N">Endoplasmic reticulum</Keyword>
<Keyword MajorTopicYN="N">GSH, Reduced glutathione</Keyword>
<Keyword MajorTopicYN="N">GSSG, Glutathione disulfide</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Glutathione</Keyword>
<Keyword MajorTopicYN="N">NEM, N-ethylmaleimide</Keyword>
<Keyword MajorTopicYN="N">OxD, Percentage of oxidation</Keyword>
<Keyword MajorTopicYN="N">PDI, Protein disulfide isomerase</Keyword>
<Keyword MajorTopicYN="N">PERK, Double stranded RNA-activated protein kinase (PKR)-like ER kinase</Keyword>
<Keyword MajorTopicYN="N">RGS, [GSH]:[GSSG]</Keyword>
<Keyword MajorTopicYN="N">Redox Homeostasis</Keyword>
<Keyword MajorTopicYN="N">Redox compartmentalization</Keyword>
<Keyword MajorTopicYN="N">Redox, Reduction–oxidation</Keyword>
<Keyword MajorTopicYN="N">Reduction potential</Keyword>
<Keyword MajorTopicYN="N">TMM(PEG)12, Maleimide-activated polyethylene glycol</Keyword>
<Keyword MajorTopicYN="N">UPR, Unfolded protein response</Keyword>
<Keyword MajorTopicYN="N">XBP1, X-box binding protein 1</Keyword>
<Keyword MajorTopicYN="N">[GStot], Total glutathione concentration</Keyword>
<Keyword MajorTopicYN="N">sCGrx1p, C30S mutant of yeast glutaredoxin 1</Keyword>
</KeywordList>
<GeneralNote Owner="NLM">Original DateCompleted: 20131119</GeneralNote>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24251119</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2013.10.005</ArticleId>
<ArticleId IdType="pii">S2213-2317(13)00074-8</ArticleId>
<ArticleId IdType="pmc">PMC3830055</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2006 Apr;97(2):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16539673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jan;10(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 May;10(5):963-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1273-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 2;49(4):810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19968277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 15;13(6):721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20095866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Mar 9;133(9):3034-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21323311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Mar 15;124(Pt 6):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2011;80:71-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21495850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 May 15;16(10):1109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22220984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23027870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23206830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Apr 1;126(Pt 7):1604-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23424194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Dec;72(6):1015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 1999 Jul;1(3):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 13;279(7):5257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 30;279(31):32667-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Aug 2;166(3):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Sep;50(3):453-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3488971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 30;274(18):12213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 31;279(53):55341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Feb 21;45(7):2362-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16475825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Jul;17(7):3095-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672378</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Appenzeller Herzog, Christian" sort="Appenzeller Herzog, Christian" uniqKey="Appenzeller Herzog C" first="Christian" last="Appenzeller-Herzog">Christian Appenzeller-Herzog</name>
<name sortKey="Rahr Winther, Jakob" sort="Rahr Winther, Jakob" uniqKey="Rahr Winther J" first="Jakob" last="Rahr Winther">Jakob Rahr Winther</name>
<name sortKey="Tachibana, Christine" sort="Tachibana, Christine" uniqKey="Tachibana C" first="Christine" last="Tachibana">Christine Tachibana</name>
</noCountry>
<country name="Suisse">
<noRegion>
<name sortKey="Montero, Davide" sort="Montero, Davide" uniqKey="Montero D" first="Davide" last="Montero">Davide Montero</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000748 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000748 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24251119
   |texte=   Intracellular glutathione pools are heterogeneously concentrated.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24251119" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020